

ALCOHOLS, PHENOLS AND ETHERS

NOMENCLATURE

Common name:- common name of alkyl group(Methyl)+alcohol =Methyl alcohol

TOI

No.	Structure	Common Name
2.	$H_3C - CH_2 - OH$	Ethyl alcohol

I.U.P.A.C. Name

2,2–Dimethyl propan – 1 – ol

I.U.P.A.C. Name

2,2,4 – Trimethyl pentan – 3 – ol

Butane-2,3-diol

I.U.P.A.C. Name

4–Ethylheptane–2,3–diol

I.U.P.A.C. Name

Pentane –1,2 – diol

4 – Chloro–2, 3 – dimethyl pentan – 1 – ol

I.U.P.A.C. Name

3 – Chloro methyl – 2 – (1 – methyl ethyl) pentan – 1 – ol

I.U.P.A.C. Name

2,5 – Dimethylhexane –1,3 – diol

I.U.P.A.C. Name

Hex-1-en-3-ol

I.U.P.A.C. Name

3 – Bromo – cyclohexan – 1 – ol

To find out no. of Possible isomers of alkyl alcohols = 2^{n-2} Possible isomers of alkyl alcohols + ethers = $2^{n-1} - 1$ Possible isomers of ethers = $(2^{n-1} - 1) - (2^{n-2})$ Where, n = No. of Carbon atoms

CH₃ 2. IUPAC name of $H_3C - CH - CH - CH - CH_2OH$ ĊH₃ a) 2 – Chloro –3, 4– dimethylpentan – 5 – ol b) 4 - Chloro -2, 3 - dimethylpentan - 2 - olc) 4 – Chloro –2, 3 – dimethylpentan – 1 – ol d) None of these

- a) 1 Bromocyclohexanol
- b) 5 Bromocyclohexanol
- c) 4 Bromocyclohexanol
- **d** 3 Bromocyclohexanol

4. Possible isomers of alkyl alcohols can be given by...

STRUCTURE OF FUNCTIONAL GROUPS

- \succ The bond angle COH in alcohol is slightly less than the tetra hedral bond angle 109⁰ 28'
- \succ It's due to repulsion between the unshared electron pairs of oxygen.
- \succ The carbon oxygen bond length (136 pm) in phenol is slightly less than that in methanol.
- \succ It's due to
 - **I.** Partial double bond character (by delocalization)
 - II. SP^2 carbon attached to OH group of phenol.

Order of bond angle:-Alcohol < Phenol < Ether

Order of bond length :-Alcohol (or) Ether > Phenol

Due to big size alkyl groups around the oxygen

Uses of Methanol

- Industrial solvent for oils , fats, gums etc.
- For dry cleaning & preparation of perfumes.
- As an antifreezing agent.
- To prepare chloromethane, dimethyl sulphate and formaldehyde etc.

Uses of Ethanol :

> As a solvent for dyes, oils, perfumes, cosmetics and drugs

> As an alcoholic beverages

- **Effective topical antiseptic**
- Used to prepare chloroform, iodoform, acetic acid etc.

Rectified spirit = 95.6% ethyl alcohol + 4.4% water (azeotropic mixture)

> Power alcohol = 20% Absolute alcohol + 80% petrol

Absolute alcohol = ethyl alcohol containing not more than 1% water (99% Pure ethyl alcohol)

- 1. Alcohols have high boiling points than that of corresponding alkanes, due to...
 - a) Metallic bonding
 - **b)** Intramolecular hydrogen bonding
 - c) Intermolecular hydrogen bonding
 - d) None of these

2. Following is used as an "antifreezing agent"...

a) Methanol

b) Ethanol

c) Propanol

d) None of these

3. Following is used as an alcoholic beverage...

a) Methanol

b) Ethanol

c) Propanol

d) None of these

4.95.6% ethyl alcohol and 4.4% water is...

a) Power alcohol

b) Rectified spirit

c) Absolute alcohol

d) None of these

5. More CO bond length of CO is observed in ---

- **b)** Phenols
- c) Both are equal
- d) Ethers

- 6. Bond length of CO in phenol is slightly less than CO of methanol because...
 - a) partial double bond character b) sp² – carbon attached to –OH group of phenol
 - c) Both a &b
 - d) none of these

